Nonlinear Estimation in Polynomial Chaos Framework

نویسندگان

  • Parikshit Dutta
  • Raktim Bhattacharya
چکیده

In this paper we present two nonlinear estimation algorithms that combine generalized polynomial chaos theory with higher moment updates and Bayesian framework. Polynomial chaos theory is used to predict the evolution of uncertainty of the nonlinear random process. In the first estimation algorithm, higher order moment updates are used to estimate the posterior non Gaussian probability density function of the random process. The moments are updated using a linear gain. In the second method, Bayesian update rule is used to determine the posterior probability density function. Since polynomial chaos is a method of moments, it does not directly yield the needed probability density functions. The density function is determined from the moments using Gaussian mixture models and maximum entropy optimization. The nonlinear estimation algorithms are applied to the duffing oscillator system with initial condition uncertainty and its performance is compared with an estimator based on extended Kalman filtering (EKF) framework. We observe that the proposed estimators outperform the EKF based estimator when measurements are not available very frequently, thus highlighting the need for nonlinear estimator in such scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Region of Attraction for Uncertain Polynomial Systems Using Polynomial Chaos Functions and Sum of Squares Method

We present a general formulation for estimation of the region of attraction (ROA) for nonlinear systems with parametric uncertainties using a combination of the polynomial chaos expansion (PCE) theorem and the sum of squares (SOS) method. The uncertain parameters in the nonlinear system are treated as random variables with a probability distribution. First, the decomposition of the uncertain no...

متن کامل

Parameter Estimation for Mechanical Systems via an Explicit Representation of Uncertainty

Purpose – To propose a new computational approach for parameter estimation in the Bayesian framework. Aposteriori PDFs are obtained using the polynomial chaos theory for propagating uncertainties through system dynamics. The new method has the advantage of being able to deal with large parametric uncertainties, non-Gaussian probability densities, and nonlinear dynamics. Design/methodology/appro...

متن کامل

Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters

Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo approaches for quantifying the effects of such uncertainties on the system response. This work uses the polynomial chaos framework to develop new methodologies for the simulation, parameter estimation, and control of mechanical sys...

متن کامل

A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I: Theoretical Approach

This is the first part of a two-part article. A new computational approach for parameter estimation is proposed based on the application of the polynomial chaos theory. The polynomial chaos method has been shown to be considerably more efficient than Monte Carlo in the simulation of systems with a small number of uncertain parameters. In the new approach presented in this paper, the maximum lik...

متن کامل

Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter

This paper proposes a new computational approach based on the Extended Kalman Filter (EKF) in order to apply the polynomial chaos theory to the problem of parameter estimation, using direct stochastic collocation. The Kalman filter formula is used at each time step in order to update the polynomial chaos of the uncertain states and the uncertain parameters. The main advantage of this method is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010